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Background

Generalization Error => bias + variance + noise

𝐸 𝐿 𝑓∗, 𝑦 −
1
𝑛
∑𝐿 𝑓∗ 𝑥" , 𝑦" ≤ 𝑂∗

𝑐
𝑛

# c: effective model capacity
(VC dimension, Rademacher… - based on model 
parameters, usually too loose to be useful with neural 
networks)

# n: training samples
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Generalization error / 
Expected risk: Empirical risk:

U-shaped generalization curve: Bias-Variance Tradeoff 

Conventional Wisdom: 



Background

Deep neural networks
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CNNs are able to fit random labels and random pixels on CIFAR10 [1]

[1] Zhang C, Bengio S, Hardt M, et al. Understanding deep learning requires rethinking generalization[J]. ICLR 2017.

Capacity of deep learning model is excessive! generalization error – empirical risk≤ 𝑂∗ "
#

number of parameters >> sample size



Background
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The training / test error of 2-layer NNs with different number of 
hidden units (H) [2]

[2] Neyshabur B, Tomioka R, Srebro N. In search of the real inductive bias: On the role of implicit regularization in deep learning[J]. ICLR 2015.

Empirical observation: 
Over-parametrization helps 
generalization…

Why do deep neural 
networks optimize and 
generalize well?



Background

Consider a 𝑚×𝑛 linear system:
𝐴𝑥 = 𝑏, 𝐴 ∈ ℝ#×%, 𝑥 ∈ ℝ%

Need 𝑟𝑎𝑛𝑘 𝐴 ≤ 𝑛 to get solutions. (at 
least as many parameters as equations)

Excessive parameters forms a larger 
hypothesis space that may contain well-
generalized solutions.
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Now think of neural networks optimization problem:
ℓ = 𝑊 𝑓 𝑉 , 𝑓 𝑉 = 𝑉



Background

• Mean Classification Error would 
be zero at every differentiable 
local minima['];

• for deep network: a large class of 
local minima is globally opXmal[)];

• SGD/GD can find global minima in 
polynomial time for DNNs, CNNs 
and ResNet[*,,]
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[3] Soudry D, Carmon Y. No bad local minima: Data independent training error guarantees for multilayer neural networks[J]. arXiv preprint arXiv:1605.08361, 2016.
[4] Nguyen, Q. & Hein, M.. The Loss Surface of Deep and Wide Neural Networks. //ICML,2017:2603-2612
[5] Allen-Zhu Z, Li Y, Song Z. A convergence theory for deep learning via over-parameterization[C]//ICML, 2019: 242-252.
[6] Du S, Lee J, Li H, et al. Gradient descent finds global minima of deep neural networks[C]//ICML, 2019: 1675-1685.

The training error of MNNs with single output, ReLU, MSE loss on 
two datasets[𝟑]

In general, over-parametrization 
networks are easy to optimize
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Double Descent

1. Classical and modern regime

Classical (under-parametrized): 
• Many local minima;
• Classical bounds apply;
• SGD (fixed step size) converge slowly.
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[7] Belkin M, Hsu D, Ma S, et al. Reconciling modern machine-learning practice and the classical bias–variance trade-off[J]. Proceedings of the National Academy of Sciences, 2019, 
116(32): 15849-15854.

Modern (interpolation). 
• Every local minimum is global, e.g. 0 training error;
• Generalization based on functional smoothness;
• Small batch SGD (fixed step size) converges as fast as GD. 



Double Descent
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2. Interpolation

Modern (interpolation). 
• Every local minimum is global, e.g. 0 training error;
• Generalization based on functional smoothness;
• Small batch SGD (fixed step size) converges as fast as GD. 

To the right of interpolation of threshold, all 
function classes are rich enough to achieve 
zero training risk

[7] Belkin M, Hsu D, Ma S, et al. Reconciling modern machine-learning practice and the classical bias–variance trade-off[J]. Proceedings of the National Academy of Sciences, 2019, 
116(32): 15849-15854.



Double Descent

3. Deep double descent

• Defined effective model complexity (EMC):the maximum number of samples on which it can achieve 
close to zero training error.

• adding label noise / training samples/ training epochs / data augmentation 
→ increase the interpolation threshold ( where EMC = training samples) 
→ correspondingly shift the peak in test error towards larger models.
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[8] Nakkiran P, Kaplun G, Bansal Y, et al. Deep Double Descent: Where Bigger Models and More Data Hurt[C].ICLR. 2019.
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Generalization

1. Inductive Bias -- assumptions on unseen inputs

Occam’s razor
deep neural networks guides the optimizers to converge to low-complexity solutions (flat minima) 
the volume of basin of good minima dominates over that of poor ones*
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[9] Wu L, Zhu Z. Towards understanding generalization of deep learning: Perspective of loss landscapes[J]. arXiv
preprint arXiv:1706.10239, 2017.

small norm of 
Hessian matrix 
this case



Generalization

1. Inductive Bias -- assumptions on unseen inputs
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[10] Keskar N S, Nocedal J, Tang P T P, et al. On large-batch training for deep learning: Generalization gap and sharp minima[C], ICLR 2017



Generalization

2. Regularization

Explicit regularization:  
weight decay (l2 regularization)..

Implicit regularization: 
SGD, dropout, batch normalization…

SGD can filter out global minima with large non-uniformity; 
[How SGD Selects the Global Minima in Over-parameterized Learning: A Dynamical Stability Perspective '18]
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Sparsity

1. Lottery Tickets Hypothesis

• Randomly initialization

• Training to convergence

• Iterative pruning

• Late resetting
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[11] Frankle J, Carbin M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks[C]//ICLR. 2019.



Sparsity

1. Lottery Tickets Hypothesis

Dashed lines: randomly sampled sparse 
networks 
Solid lines: winning tickets

Ø Compared with nicely pruned networks,  
randomly pruned networks seem to 
optimize and generalize difficultly
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[11] Frankle J, Carbin M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks[C]//ICLR. 2019.



Sparsity

1. Lottery Tickets Hypothesis

Solid lines: reset the remaining parameters to their values in 𝜃-, creating the winning ticket
Dashed lines: random initialization
Ø Compared with winning tickets, random initialization makes networks learn slower.
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[11] Frankle J, Carbin M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks[C]//ICLR. 2019.



Sparsity

1. Lottery Tickets Hypothesis

Ø winning tickets derived from initially larger networks reach higher accuracy.
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[11] Frankle J, Carbin M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks[C]//ICLR. 2019.



Sparsity

1. Lottery Tickets Hypothesis

Ø winning ticket weights tend to change by a larger amount then weights in the rest of the 
network, 
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[11] Frankle J, Carbin M. The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks[C]//ICLR. 2019.



Sparsity

1. Lottery Tickets Hypothesis

Consider: over-parameterization, random initialization, and the linear convergence jointly restrict 
every weight vector wr to be close to its initialization
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* Du S S, Zhai X, Poczos B, et al. Gradient Descent Provably Optimizes Over-parameterized Neural Networks[C]// ICLR. 2018.



Sparsity

2. Deconstructing lottery tickets

the magnitude_increase criterion 
turns out to work just as well as the 
large_final criterion, and in some 
cases significantly better
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[13] Zhou H, Lan J, Liu R, et al. Deconstructing lottery tickets: Zeros, signs, and the supermask[C]. NIPS, 2019.



Sparsity

2. Deconstructing lottery tickets

• training the mask, instead of training network weights can get competitive performance .' .

• Proved by [14], a ReLU network of arbitrary depth L can be approximated by pruning weight 
of a random initialized network of depth 2L and sufficient width. (But computationally hard!) 

Zheng He Over-parametrization and Sparsity 2021.04.02

[13] Zhou H, Lan J, Liu R, et al. Deconstructing lottery tickets: Zeros, signs, and the supermask[C]. NIPS, 2019.
[14] Malach E, Yehudai G, Shalev-Schwartz S, et al. Proving the lottery ticket hypothesis: Pruning is all you need[C]//ICML, 2020: 6682-6691.



Sparsity

3. Generalizing lottery tickets

winning tickets provide beneficial inductive bias
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[15] Morcos A S, Yu H, Paganini M, et al. One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers[C]. NIPS, 2019..

within the same data distribution



Sparsity

3. Generalizing lottery tickets

winning tickets provide beneficial inductive bias
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[15] Morcos A S, Yu H, Paganini M, et al. One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers[C]. NIPS, 2019..
across datasets

VGG

ResNet50



Remaining Questions and Possible Directions

1. How to reduce computational cost, increase learning stability/robustness?
2. What make the winning tickets special? How to balance between over-parametrization and sparsity, 

and enhance generalization?
3. Is there room to improve the initialization methods?

Ø Advance in pruning algorithms…
[What’s hidden in a randomly weighted neural network? CVPR 2020]
[Picking Winning Tickets Before Training by Preserving Gradient Flow. ICLR 2020]

Ø Exploit the optimization (or generalization) properties…
[One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers. NIPS 2019]
[Linear Mode Connectivity and the Lottery Ticket Hypothesis. ICML 2020]

Ø Investigate early learning… 
[The Early Phase Of Neural Network Training. ICLR 2020] 
[Robust Early-learning: Hindering The Memorization Of Noisy Labels. ICLR 2021]
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Thanks!
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