On the Hardness of Conditional Independence Testing In Practice
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Abstract

e Motivation: Conditional independence tests (KCI, GCM) are
widely used in causal discovery, scientific modeling, fairness, OOD
ceneralization, ..., but are unstable and behave poorly. Why?

e Key Insight: Regression errors in estimating conditionals cause
spurious dependence under the null, violating asymptotic
assumptions and leading to null calibration failure. Choosing the
conditioning variable kernel helps power but makes bias worse.

CI Testing is Impossible

Shah and Peters (2020): for any CI test and any conditionally depen-
dent continuous distribution, there is an indistinguishable distribution
which is conditionally independent. (“Hide” dependence in the conditional.)
Us: solely because of estimating conditional feature means from data.

Characterizing CI

Theorem (extending Daudin, 1980). A I B | C if and only if

B w(C) E [ (F(4) ~E[f(4) | C)) (9(B) - Elg(B) | C)) | €| =,

for all square-integrable functions f € L%, g € L%, and w € Lz.

Kernel-based CI Measure

An RKHS H 4 contains functions that are linear w.r.t. some feature
map ¢a: fa) = (w, pa(a)).

The conditional mean embedding ji4c(c) = E[pa(A) | C = ¢
gives (pajclc), flu, = E[f(A) | C = ¢

Can make a conditional cross-covariance operator € p - that
captures the dependence between A and B given C:

Caplolc) = Af};:cl (DA(A) — pac(c)) @ (op(B) — upiclc)) | C = C}
gives (f ® g, Cypiolc)) = Cov(f(A),g(B) | C =c).

The KCI operator summarizes over C:

Capc(C) & ¢O(C)}

which gives for any test functions f, g,w, (f ® g, ket W)nspn,) =
w(C) E.[(f(4) —E[f(4) | C)) (g(B)~ E[g(B) | C))] |

So if H 4, Hp, He are L =-universal, Cxcy =0iff A I B | C.
Common test statistic (Zhang et al. 2011) is based on KCI = ||€kcil|%s.
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Unified Framework of KCI and GCM

GCM (Shah and Peters 2020) computes a studentized estimate of
Clw(C)(A = E[A|C])(B = E[B|C])],

with w(C') = 1. Weighted GCM (Scheidegger et al. 2022) chooses w
to emphasize specific conditional structures.

KCI operator with linear kernels on A,B (¢a(a) = a) reduces to the
same conditional covariance operator estimated by (w)GCM.

Kernel Choice Tradeoff

A= fa(C)+1ra, B=[fp(C)+1rg, (ra,rp)|C ~ N(0,%(C)),
with Var(r4) =1 = Var(rp), Cov(ra,rg) = v(C) = sin(SC)
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Take linear kernels for A and B, and a lengthscale-¢~ Gaussian kernel

ko(C,C") = exp (—(C — C")*/(20%)) on C:

KCI = 1" E ke(C,C)y(C(C")

The kernel on C' must resolve regions where dependence is strong:

-

e 'Too smooth: conditional structure blurred — statistic near 0.

e 'Too sharp: estimates become very noisy — unstable statistic.

GCM corresponds to £ = oo.

Conditioning kernel selection. Under the alternative, there is a

scalar 6%1 > () so that as n — oo,

Vn(KCI,, — KCI) % N(0, 65, ).

Can roughly maximize test power by maximizing SNR = EC\I/ Oy,

Asymptotic Variance of v nKCl,

le—5 KCI 1le—9 SNR=KCI/051
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Type-1 Error Inflation with Regression Errors

What if A IL B | C but we have E¢4(A) | C wrong?

Let Ayo(C) = fiaic(A) — praje(C), same for Apc.

When A 1L B | C, the expected KCI with regression errors is
KCI = E kc(C, ") (Axjc(C), Axjc(C))ay (Apie(C), Apio(C))ay |-

If we're choosing a C' kernel to look for dependence, we can usually find
it in fixed, smooth A 40, Apc!
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Why null calibration breaks: If A I B | C, regressions fixed:
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Perfect regression 0 O(1/n)
Incorrect regression O(1) O(1/y/n)

But the null approximations (x* or Gamma from Zhang et al. 2012, wild
bootstrap from Pogodin et al. 2024) don’t know what’s bias and what’s
signal!l Need regression’s seeming-dependence — 0 fast for calibration.

Practical Recommendations

e Sample Splitting: Use an independent training set (for conditional mean
estimation) and a test set (for KCI statistic). Training size should be >,
preferably > test size depending on complexity:.

e Strong Regression: Use flexible, low-bias models for regression.
e Power Maximization: Select k¢ via SNR maximization on the training set.

e Be really really careful. Can still easily trick yourself.

Future directions

Will need to explicitly incorporate regression uncertainty in the null.
Split KCI (Pogodin et al. 2024) is a step in this direction, but not enough!
Impossible in general. .. but so is regression, and we still do regression.
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