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Abstract
• Motivation: Conditional independence tests (KCI, GCM) are

widely used in causal discovery, scientific modeling, fairness, OOD
generalization, . . . , but are unstable and behave poorly. Why?

• Key Insight: Regression errors in estimating conditionals cause
spurious dependence under the null, violating asymptotic
assumptions and leading to null calibration failure. Choosing the
conditioning variable kernel helps power but makes bias worse.

CI Testing is Impossible

Shah and Peters (2020): for any CI test and any conditionally depen-
dent continuous distribution, there is an indistinguishable distribution
which is conditionally independent. (“Hide” dependence in the conditional.)
Us: solely because of estimating conditional feature means from data.

Characterizing CI

Theorem (extending Daudin, 1980). A ⊥⊥ B | C if and only if

E
C

w(C) E
AB|C

 (f (A) − E[f (A) | C]) (g(B) − E[g(B) | C]) | C


 = 0,

for all square-integrable functions f ∈ L2
A, g ∈ L2

B, and w ∈ L2
C.

Kernel-based CI Measure

An RKHS HA contains functions that are linear w.r.t. some feature
map ϕA: f (a) = ⟨w, ϕA(a)⟩.
The conditional mean embedding µA|C(c) = E[ϕA(A) | C = c]
gives ⟨µA|C(c), f⟩HA = E[f (A) | C = c].
Can make a conditional cross-covariance operator CAB|C that
captures the dependence between A and B given C:
CAB|C(c) := E

AB|C


ϕA(A) − µA|C(c)

 ⊗
ϕB(B) − µB|C(c)

 | C = c


gives ⟨f ⊗ g,CAB|C(c)⟩ = Cov(f(A), g(B) | C = c).
The KCI operator summarizes over C:

CKCI := E
C

 CAB|C(C) ⊗ ϕC(C)


which gives for any test functions f, g, w, ⟨f ⊗ g,CKCI w⟩HS(HB,HA) =

E
C

 w(C) E
AB|C

 (f (A) − E[f (A) | C]) (g(B) − E[g(B) | C])


.

So if HA, HB, HC are L2-universal, CKCI = 0 iff A ⊥⊥ B | C.
Common test statistic (Zhang et al. 2011) is based on KCI = ∥CKCI∥2

HS.

Unified Framework of KCI and GCM

GCM (Shah and Peters 2020) computes a studentized estimate of
E[w(C)(A − E[A|C])(B − E[B|C])] ,

with w(C) = 1. Weighted GCM (Scheidegger et al. 2022) chooses w
to emphasize specific conditional structures.
KCI operator with linear kernels on A,B (ϕA(a) = a) reduces to the
same conditional covariance operator estimated by (w)GCM.

Kernel Choice Tradeoff

A = fA(C) + τrA, B = fB(C) + τrB, (rA, rB) | C ∼ N(0, Σ(C)),
with Var(rA) = 1 = Var(rB), Cov(rA, rB) = γ(C) = sin(βC)
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Marginal projection (all C)

Take linear kernels for A and B, and a lengthscale-ℓC Gaussian kernel
kC(C, C ′) = exp (−(C − C ′)2/(2ℓ2

C)) on C:
KCI = τ 4 E

C,C ′

kC(C, C ′)γ(C)γ(C ′)


The kernel on C must resolve regions where dependence is strong:
• Too smooth: conditional structure blurred → statistic near 0.
• Too sharp: estimates become very noisy → unstable statistic.
GCM corresponds to ℓC = ∞.
Conditioning kernel selection. Under the alternative, there is a
scalar σ̂2

H1
≥ 0 so that as n → ∞,

√
n(K̂CI n − K̂CI ) d−→ N (0, σ̂2

H1
).

Can roughly maximize test power by maximizing ŜNR = K̂CI /σ̂H1.
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Type-I Error Inflation with Regression Errors

What if A ⊥⊥ B | C but we have EϕA(A) | C wrong?
Let ∆A|C(C) = µ̂A|C(A) − µA|C(C), same for ∆B|C.
When A ⊥⊥ B | C, the expected KCI with regression errors is
K̂CI = E

kC(C, C ′) ⟨∆A|C(C), ∆A|C(C ′)⟩HA ⟨∆B|C(C), ∆B|C(C ′)⟩HB

 .

If we’re choosing a C kernel to look for dependence, we can usually find
it in fixed, smooth ∆A|C, ∆B|C!
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Why null calibration breaks: If A ⊥⊥ B | C, regressions fixed:
KCI mean KCI std. dev

Perfect regression 0 Θ(1/n)
Incorrect regression Θ(1) Θ(1/

√
n)

But the null approximations (χ2 or Gamma from Zhang et al. 2012, wild
bootstrap from Pogodin et al. 2024) don’t know what’s bias and what’s
signal! Need regression’s seeming-dependence → 0 fast for calibration.

Practical Recommendations
• Sample Splitting: Use an independent training set (for conditional mean

estimation) and a test set (for KCI statistic). Training size should be ≥,
preferably ≫, test size depending on complexity.

• Strong Regression: Use flexible, low-bias models for regression.
• Power Maximization: Select kC via SNR maximization on the training set.
• Be really really careful. Can still easily trick yourself.

Future directions

Will need to explicitly incorporate regression uncertainty in the null.
SplitKCI (Pogodin et al. 2024) is a step in this direction, but not enough!
Impossible in general. . . but so is regression, and we still do regression.
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