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Review of Label Noise Robust Learning
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Background - Label Noise Robust Learning

Problem definition

 Clean distribution: p(x, y) JL + LA + + ," A
. . . N — + I'A + N -/ A - A
« Corrupted distribution: p(x, ), ¥ is a e of A A
noisy label which may not be true IL + \A AA I + ‘A ~A
+ :/ \\/\
* Given the training dataset D = ol -|-.I:AA A =P +.I:,'AA A
{x;, y;})_,, the goal is to minimize the
o Standard supervised Learning with
risk on clean distribution (test data): learning label noise

R(fg) = E (%) ~p(x,y) [L(f (%), y)]
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Background - Label Noise Robust Learning

Label noise types

« Class-dependent noise: the true label is corrupted by a noise transition

matrix T € [0,1]°%¢, where c is the number of classes.

T =p=jly=1

17 T _T_ - 1—7 7 0 0 ]
= n—1 .
0 T
R e (RS kot I I S ( NUURN B
(a) Sym-flipping. (b) Pair-flipping.
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Methods - Label Noise Robust Learning

»Deep learning approaches for dealing with label noise

Robust Architecture (8III-A) Robust Loss Function (81II-C) Loss Adjustment (81II-D)
‘ Robust Training i

\\\ . 7 0 VLl
u ' ' Py 4
2 > o1l I /\<
Deep Neural 1,y oo Function \ -

Architecture VLs L 2 VL,
=~-L T T 4--" N N
O o &8 8 O o8 8K Training | | Regulari- O o RX ,223\ X O o8 8W
OO0 & Ozl OO &8 Data zation ’\O '@3'@’8 >| O O'& O &
O8 008y| |0 00Bg|l .k I |02 Q0 8g| |08 008y
Sample Selection (S8III-E) Robust Regularization (8III-B)
Categorization of recent deep learning methods for overcomming noisy labels.

Song H, Kim M, Park D, et al. Learning from noisy labels with deep neural networks: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022. 6
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Methods - Label Noise Robust Learning

Robust loss function

* We call a loss function L symmetric if it satisfies, for some constant K

z L(f(x),[) = K,Vx € X,Vf
=1

»Symmetric loss is proved to be robust under class-dependent label noises.
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Methods - Label Noise Robust Learning

Robust loss function

Proof. Given symmetric loss L, for any f, R.,(f) = Ey)~pay L (x), ¥)1.

I—=ni=]
For symmetric label noise ( T; ;= { B ), for any f
c-1’

RI(F) = Egeypieg [LF 0, )]
= IExIEylx[E_:jll(x,y) [L(f(x),f/)]

=By [(1-DLI @)+ 27 ) LG, i)]
Eoi (1 =MLY ) + = (K= L, )]
+ (1= DR

= E,E

c—1

. -1 . e . . e .
Thus, ifn < —CC , the minimizer of R; is also a minimizer of RZ.
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Methods - Label Noise Robust Learning

Robust loss function

« Mean Absolute Error (MAE)

« For DNNs with a softmax output layer, MAE can be computed as:

N

N
Luas (PO YY) = ) ley = FGll, = ) 2= 2f,6)

l

where e, € {0,1}° refers to the one-hot encoding of y;, and f,,.(x) denotes the

v €lement of f(x)
« | MAE loss is symmetric but difficult to converge
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Methods - Label Noise Robust Learning

Robust loss function

* Generalized Cross Entropy (GCE)

N 1- fyci(xl)
i=1 q

Lece(F(X),Y) = 2 ,q € (0,1]

» if g —» 0, GCE is equivalent to Cross Entropy; if g = 1, GCE is equivalent to MAE.

» Robustness analysis. When using softmax output layer, Lgcg is bounded as

c—cla c 1-f,i(x) c—1
Ly .
q j=1 q q

c—1
C

n(l—ct9) -
q(c—1—-nc)

Riger(f7) — RZGCE(f) <0, ifn<

Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. NeurlPS, 2018. 10
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Methods - Label Noise Robust Learning

Robust loss function

* Generalized Cross Entropy (GCE)

Lace(fCO,Y) = )

« Gradient analysis:

N 1- fyci(xl)
i=1 q

 GCE behaves like a weighted MAE

Zhilu Zhang and Mert R Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. NeurlPS, 2018.
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Methods - Label Noise Robust Learning

Robust loss function

« Symmetric Cross Entropy (SCE)
« KL divergence: KL(q||lp) = H(q,p) — H(q)
« CE = H(q,p), Reverse Cross Entropy RCE = H(p, q)
N

Lree(f(X),Y) = —Z f1(x)loge;

=1

» Define log 0 = A, RCE term is symmetric. if A=-2, RCE is exact MAE:

Lrce(f(X),Y ) = — zliV:lA (1 — fyi(xi))

« SCE = aCE +SRCE, ensure both converge and robustness

Yisen Wang, Xingjun Ma, Zaiyi Chen, etal. Symmetric Cross Entropy for Robust Learning with Noisy Labels. ECCV 2019. 12
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Methods - Label Noise Robust Learning

Loss adjustment

> Correcting loss with the estimated noise transition matrix T

e Backward correction [1] : is unbiased if T = T

LBackward — T_1<l(f(x), 1)! l(f(X), 2)1 ey l(f(X), C))T

* Forward correction [1]:

Lrorwarda = L(TTf(X)T' 7)

. . . . . . . 13
[1] D. Hendrycks, M. Mazeika, D. Wilson, and K. Gimpel, “Using trusted data to train deep networks on labels corrupted by severe noise,” in Proc. NeurIPS, 2018
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Methods - Label Noise Robust Learning

Robust regularization

»Reduce model complexity may prevent overfitting

» Widely used regularization techniques: data augmentation, weight

decay, dropout, label smoothing ...
* More advanced techniques:

 Restrict the distance to initialization of parameters [1]

LEP(0) = 3 3 (F(8, @) — ) + - 10— 0(0)]°

1=1

* Reduce trainable parémeters [2]

[11Hu W, Li Z, Yu D. Simple and effective regularization methods for training on noisily labeled data with generalization guarantee. ICLR 2020. 14
[2] Xia X, Liu T, Han B, et al. Robust early-learning: Hindering the memorization of noisy labels. ICLR 2021.
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Methods - Label Noise Robust Learning

Sample selection

»Memorization effect 00

« Deep networks tend to fit easy (clean) "

patterns first, and gradually over-fit

60

Accuracy(%)

hard (noisy) patterns

40

« Memorization effect could be used to

20

identify clean samples

Training and test accuracy curves.
Solid lines: training accuracy;
dashed lines: test accuracy. 15
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Methods - Label Noise Robust Learning

Sample selection

»Select small-loss training examples as L0 17 True-labeled sample |
true-labeled examples. - gi False-labeled sample i
 Only train with small-loss examples [1]; §3 04 1 (1-7)x100% small-loss |
« Assigned more weights to small-loss 2(2) |
examples [2]. 6 4 2 o 2 4

Loss (log-scale)

Loss distribution of training examples at
the training accuracy of 50% on noisy
CIFAR-100.

[1] Co-teaching: Robust training of deep neural networks with extremely noisy labels. NeurlPS 2018. 16
[2] M. Ren, W. Zeng, B. Yang, and R. Urtasun, “Learning to reweight examples for robust deep learning,” in ICML, 2018.
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Sample selection

» Co-teaching
 Train two networks simultaneously

* |n each mini-batch data, each network
samples its small-loss instances, and
teaches such useful instances to its peer

network.

 Two networks can attenuate each others’

error.

Co-teaching: Robust training of deep neural networks with extremely noisy labels. NeurIPS 2018.
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Methods - Label Noise Robust Learning
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Methods - Label Noise Robust Learning

Hybrid approaches

»Combine with semi-supervised learning N l A

methods.

...........

« Consistency regularization

S|e
S|e

. Relabeling [1] + ,x’:A
Sje

- Dividemix [2] . :
== A\ Labeled samples

wm A+ Unlabeled samples

...........

« ELR [3]

[1] Zhou T, Wang S, Bilmes J. Robust curriculum learning: from clean label detection to noisy label self-correction. ICLR 2020.
[2] J. Li, R. Socher, and S. C. Hoi, “DivideMix: Learning with noisy labels as semi-supervised learning,” in Proc. ICLR, 2020 18
[3] Liu S, Niles-Weed J, Razavian N, et al. Early-learning regularization prevents memorization of noisy labels. NeurlPS 2020

Zheng He Learning with Biased Labels 2022.12.02



Methods - Label Noise Robust Learning

Hybrid approaches

« Consistency regularization

« Assumption: If two points x1, x2 reside in a high-density region are

close, then so should be their corresponding outputs y1, y2

* |f a realistic perturbation was applied to the unlabeled data points, the

prediction should not change significantly.

Lreg — [ExEDu [d(f(x; 9):]{(55; 9))]

where d(,) is a distance measure

19
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Methods - Label Noise Robust Learning

Hybrid approaches
 Dividemix:
* Use Gaussian Mixture Model to select clean samples

* Apply M rounds of data augmentation for m = 1to M do
ZTb,m = Augment(xp)
Up,m = Augment(up)
end

» Label refinement: guided by model predictions of labeled samples x,,

Py = ﬁ Zm Pmodel (jgb,m; e(k))
U = weyp + (1 — wp)ps

// refine ground-truth label gui
U» = Sharpen(gp, 1)

J. Li, R. Socher, and S. C. Hoi, “DivideMix: Learning with noisy labels as semi-supervised learning,” in Proc. ICLR, 2020 20
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Methods - Label Noise Robust Learning

Hybrid approaches

* Dividemix:

« Co-guessing: average the predictions from both networks of unlabeled sample u;

/ ‘ — [ Classify ] l]]:ﬂ]: \ (A D
______ ¥ ‘—~-~~~* l I
----- > .. Kaugmentations ... i H HHDH _’ ;llllll I

(g e
a8,
-

-
-
o~
-

Unlabeled\ & — [ Classify ] Elih / \_Average )\ _Sharpen

1 ) 1
Lx =— y: y:pc log(pmodel(x;e))a Ly = |U/| Z ||p_pmodel(x;9)||§ :

| X7
xz,peX’ c x,peU’

J. Li, R. Socher, and S. C. Hoi, “DivideMix: Learning with noisy labels as semi-supervised learning,” in Proc. ICLR, 2020 21
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Methods - Label Noise Robust Learning

Hybrid approaches

« ELR:
* Lgtr = Leg + ALyeg

N

LregFCO,Y) = )~ 10g(1 = {f (x),t)

i
where t; is moving average of model historical prediction.

» Use early-learning stage of model prediction to hinder memorization.

« ELR+ tricks: train two models; use weight averaging; mixup data

augmentation

Liu S, Niles-Weed J, Razavian N, et al. Early-learning regularization prevents memorization of noisy labels. NeurlPS 2020. 22
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Methods - Label Noise Robust Learning

Summary of methods data.
« Loss function: * Hybrid approaches:
« Utilize symmetric loss functions * Relabeling
- Estimate noise transition matrix » Consistency regularization

« Regularization:

» Reduce effective model capacity

« Sample selection:

« Design criterions to identify noisy

23
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New Directions - Label Noise Robust Learning

Instance-dependent label noise

« The label corruption probability is assumed to be dependent on both the

data features and class labels. The corruption probability is
T;j(x) =py = jly = i,x)
» Difficulties:
* How to estimate the noise transition matrix? The size of T is very huge.

* How to identify noisy samples? The loss distribution of true-labeled and

false-labeled samples may heavily overlap.
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Thanks for listening!
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